Powered by Invision Power Board


Страницы: (8) Все « Первая ... 4 5 [6] 7 8  ( Перейти к первому непрочитанному сообщению ) Ответ в темуСоздание новой темыСоздание опроса

> Митохондрии — инструмент Зла
radmar
Дата 6.07.2006 - 11:51
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Структура этой машины такова, что протон проваливается через полуканал с наружной стороны митохондриальной мембраны, но попасть внутрь митохондрии он не может. Сваливается протон на подставленную ему аминокислоту ротора и эту аминокислоту протонирует, то есть на аминокислоте появляется дополнительный положительный заряд. Затем, когда протонированная аминокислота на вращающемся роторе доедет до следующей половинки канала, ведущей уже внутрь митохондрии (а внутри протонов мало и, кроме того, там протон поджидают отрицательно заряженные ионы), то протон наконец "падает" внутрь и аминокислота освобождается от положительного заряда. Заряды в роторе и статоре расположены таким образом, что протонирование – депротонирование приводит к повороту машины. Таким образом, протон в два приема проваливается внутрь митохондрии, и за счет этого мотор проворачивается.

За объяснение ферментативного механизма, лежащего в основе синтеза АТФ, два исследователя получили Нобелевскую премию: Пол Д. Бойер, США и Джон Э. Уолкер, Великобритания (Нобелевская премия 1997 года).

Было рассказано, как мотор крутится, но не было объяснено, почему синтезируется АТФ. Сейчас подробно мы на этом останавливаться не будем, но вкратце, объяснить это можно следующим образом. Представим АТФ в таком виде: АТФ=АДФ~Ф. Собственно, почему при разрыве этой связи выделяется большое количество энергии? При разрыве образуется отрицательно заряженный фосфат, который гидратируется (покрывается «шубой» из молекул воды). Как вы помните, вода – это диполь (кислород имеет частично отрицательный заряд, а два водорода - положительный). И за счет гидратирования эта энергия и получается. Но если синтез АТФ идет в той среде, где воды нет, т.е. в гидрофобной среде, то макроэргической эта реакция не является. Показано, что когда происходит образование ковалентной связи между фосфатными группами молекул АДФ и Ф, ферменту практически не требуется энергии. Реакции синтеза и гидролиза ATP в каталитическом центре фермента активно идут при отсутствии внешнего источника энергии. Условия, в которых находятся молекулы АДФ и Ф в каталитическом центре, существенно отличаются от условий протекания реакции в водной среде, благодаря чему образование молекулы АТФ в активном центре фермента может происходить энергетически "бесплатно". Энергия "падающих" протонов тратится потом на то, чтобы «выпихнуть» вон АТФ, отцепить его от каталитической субъединицы.

Таким образом, за счет электрохимического потенциала на внутренней мембране митохондрий внутри клетки или митохондрий совершается механическая работа, сопряженная с химическим синтезом.

На рисунке виден срез митохондрии (рис. 12). Внутри содержится матрикс и выросты (складки) – кристы, на которых и расположена АТФ-синтаза. Зачем нужны складки? Чтобы увеличить площадь поверхности. Количество складок внутри митохондрий зависит от того, насколько интенсивно ей приходится работать, сколько энергии нужно клетке. Митохондрии в клетках печени имеют гораздо меньше крист, чем, например, в клетках сердца.


Это сообщение отредактировал radmar - 6.07.2006 - 11:52

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 6.07.2006 - 11:53
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

В хлоропластах происходит точно такой же процесс синтеза АТФ, также работает АТФ-синтаза, как и в митохондриях, но источником протонного потенциала является уловленная энергия света. Там тоже есть складки, они называются тилакоидами. Только в хлоропластах все как бы вывернуто наизнанку. То есть протоны за счет энергии света накапливаются снаружи этих образований.

ДВИГАТЕЛЬ БАКТЕРИЙ

Перейдем к работе следующего молекулярного мотора – жгутика у бактерии.

Известно, что не все, но некоторые бактерии могут двигаться. Для того, чтобы двигаться, они вертят хвостом, т.е. жгутиком. Если жгутиков несколько, то во время вращения они сплетаются в единый жгут, и вращаются, двигая бактерию, примерно как лопасти у катера (рис. 13).


Это сообщение отредактировал radmar - 6.07.2006 - 11:54

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 6.07.2006 - 11:55
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Жгутик очень маленький, в световой микроскоп его трудно увидеть. Для того, чтобы проверить, действительно ли жгутик вращается при движении бактерии, бактериальную клетку за жгутик прикрепили к стеклу (рис. 14). В раствор добавили вещество, которое она любит, например, сахар, и она начала вертеться, потому что она явно хотела добраться до сахара, если не добавляли, то она вела себя более спокойно.

Это сообщение отредактировал radmar - 6.07.2006 - 11:56

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 6.07.2006 - 11:57
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Для того, чтобы жгутик вращался, в его основании находится так называемое базальное тело, которое представляет собой электромотор (рис. 15). Его задача заключается в том, чтобы крутить жгутик. На рисунке изображена мембрана бактериальной клетки (желтая), и части мотора статор (синий) и ротор (зеленый). К ротору прикручен жгутик. Пока неизвестно, как именно передается движение, но в этой молекулярной машине есть свои подшипники, своя молекулярная смазка, и есть белок, в котором, также как и в АТФ-синтазе, имеются два протонных полуканала, смещенных друг относительно друга. И принцип вращения такой же: зарядка-перезарядка группы COOH в аминокислотах. Число протонов, которые должны «провалиться» в канал за время одной прокрутки жгутика,- порядка тысячи; остальные параметры приведены ниже

Это сообщение отредактировал radmar - 6.07.2006 - 11:58

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 6.07.2006 - 12:01
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Параметры, этого молекулярного мотора.

Это сообщение отредактировал radmar - 6.07.2006 - 12:01

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 6.07.2006 - 12:03
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Вот микрофотография жгутика и молекулярного мотора в основании этого жгутика.

ЛИТЕРАТУРА ПО ТЕМЕ:

Соросовский образовательный журнал http://www.issep.rssi.ru/
Скулачев В.П. Законы биоэнергетики// СОЖ 1997, №1, с. 9-14.
Скулачев В.П. Электродвигатель бактерий. // СОЖ 1998, №9, с. 2-7.
Виноградов А.Д. Преобразование энергии в митохондриях // СОЖ 1999, №9, с. 11-19.
Тихонов А.Н.Молекулярные преобразователи энергии.// СОЖ. 1997, № 7, с. 10-17.
Тихонов А.Н. Молекулярные моторы. Часть 1. Вращающиеся моторы живой клетки // СОЖ. 1999, №6, с. 8-16
В.П.Скулачев Рассказы о биоэнергетике. Серия "Эврика". М. 1982.
Более подробно
Уайт А., Хендлер Ф., Смит Р. и др. Основы биохимии. М.: Мир, 1981.
Скулачев В.П. Аккумуляция энергии в клетке. М.: Наука, 1969.
Скулачев В.П. Мембранные преобразователи энергии. М.: Высш. шк., 1989.
Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989.
Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. 2-е изд. М.: Мир, 1994. Т. 1.
Николс Д.Д. Биоэнергетика: Введение в хемиосмотическую теорию. М.: Мир, 1985.


Это сообщение отредактировал radmar - 6.07.2006 - 12:06

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
Verb
Дата 6.07.2006 - 19:53
Написать ответЦитировать выделенный текст
Offline

Соратник
***

Профиль
Группа: Пользователи
Сообщений: 111

Привет, Radmar!

Когда я впервые читал «Глубинную книгу», то меня поразили в ней некоторые фотографии и рисунки. Поскольку я ничего подобного не встречал, то наивно подумал, что их создал сам Пятибрат для своей книги. Ничего удивительного в этом нет, так как я не специалист в микробиологии клетки, а Пятибрат почему-то не сделал ссылок на источники заимствования иллюстраций, написав в первой части ГК только следующее: «Одержимые Судьбой врачи и учёные с детства вбивают в голову каждому жителю планеты, что микро роботы – «исключительно природное явление», впрочем, корифеи сами свято верят в то, что говорят.
✫ Позднее, под конец 20 века, в 1989 году, некоторые учёные Теры, такие как В.П.Скулачёв и другие, выступали с интересными результатами своих исследований»

Далее размещены в книге фотографии и рисунки.

Ведь ГК написана как вызов науке и религии и сделано это с некрываемым пафосом торжества индивидуального познания над коллективным разумом ученых-лунников.
Но более чем полгода назад мне попался в руки «Соровский образовательный журнал» (электронный вариант, нескольких номеров), в котором были опубликованы работы В.П.Скулачёва и в частности, - работа «Электродвигатель бактерий»(СОЖ №9, 1998).
Те материалы, которые ты сегодня выложил я не хотел выносить на форум по двум причинам:
• Владимир сделает когда-нибудь точные ссылки на источники иллюстраций, ведь книга постоянно переделывается и улучшается;
• Не хотелось давать читателям ГК лишний повод посплетничать и попустословить;
• Хотелось подольше побыть под очарованием этой прекрасной и мудрой сказки.

А два дня назад, в общении с друзьями, мы обсуждали ситуацию, которая сложилась на форуме, - форум почти еле дышит и что не пора ли выкинуть, что нибудь экстравагантное.
Была высказала мысль, что на форуме создалась такая обстановка, что как буд-то бы они хотят, чтобы кто-нибудь повел работу по разрушению ГК, с тем чтобы книга в ходе переделки обрела ещё большую мощь. Я предложил выдать материалы из «Соровский образовательный журнала». Но, подумал и воздержался в силу только что упомянутых причин. И вот, через два дня, сегодня я увидел, что ты сделал это первым. Ну ладно сделал, так сделал. Но можно было бы предупредить 5–го. Дело в том, что после приведённой мною цитаты, несколько ниже в ГК размещён рисунок, сделанный очевидно учениками Скулачёва.

А в упомянутой работе В.П.Скулачёва «Электродвигатель бактерий»(СОЖ №9, 1998) даётся такой рисунок.





Обращают на себя внимание некоторые отличительные особенности двух рисунков. На рисунке из СОЖ надписи даны на русском языке: «Внешняя среда», «Цитоплазма», а на рисунках в ГК русские слова написаны латиницей: «Vneshnya sreda», «Citoplazma», и ещё добавлено «Shema motora bakterii». Это что, для прикола? В такой книге как ГК?

Рисунки переслать не удалось. Подскажите, как это делается.
PMПисьмо на e-mail пользователю
Top
radmar
Дата 7.07.2006 - 12:58
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Привет Verb!
Цитата (Verb)
Владимир сделает когда-нибудь точные ссылки на источники иллюстраций, ведь книга постоянно переделывается и улучшается

У него катастрофически не хватает реальных помощников, для этого. Ну и по мелочам, времени, средств и т.д. .
Однако книга постоянно переделывается и улучшается, но при наличии нашей общей помощи этот процесс мог бы значительно ускориться. А времени, как он постоянно подчёркивает, отведенного нам Богом - у нас у всех уже практически не осталось.

Цитата (Verb)
Не хотелось давать читателям ГК лишний повод посплетничать и попустословить

Пятибрат надеялся и продолжает надеятся, что форум Вече как и сайт Богатырская стезя, станут действительно всенародным институтом, в котором каждый сможет, как получить верные знания, так и поделиться наработанными своими умениями - в соответствии с направлениями затронутыми в Глубинной Книге. Однако пока к сожалению, в основном происходит то, о чём Вы пишете.
Цитата (Verb)
А два дня назад, в общении с друзьями, мы обсуждали ситуацию, которая сложилась на форуме, - форум почти еле дышит и что не пора ли выкинуть, что нибудь экстравагантное.

Пятибрат просил передать Вам, чтобы не сомневались, выкладывали проверенную информацию, по соответствующим тематикам, ведь для этого этот институт народного ликбеза по основам Мироздания, им и создавался.
Цитата (Verb)
И вот, через два дня, сегодня я увидел, что ты сделал это первым. Ну ладно сделал, так сделал. Но можно было бы предупредить 5–го.

По его желанию, мной и был выложен, этот материал по митам.
Цитата (Verb)
На рисунке из СОЖ надписи даны на русском языке: «Внешняя среда», «Цитоплазма», а на рисунках в ГК русские слова написаны латиницей: «Vneshnya sreda», «Citoplazma», и ещё добавлено «Shema motora bakterii». Это что, для прикола?

Книгу, в тот период, помогали готовить по частям различные люди. Возможно некоторые документы готовились в DOS редакторах на машинах под DOS. Видимо были проблемы, с руссификацией текста.
Цитата (Verb)
Рисунки переслать не удалось. Подскажите, как это делается.

Пишете основной текст поста, отправляете его, находите его в теме, вызываете на редактирование - по появившейся в режиме редактирования кнопке "Обзор" выбираете из вашего каталога картинку, вставляете как присоединённое изоображение, отправляете пост - вот и всё.

Это сообщение отредактировал radmar - 7.07.2006 - 13:26
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 7.07.2006 - 12:59
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Общий текст постов "Молекулярные машины", собирался из текстовых фрагментов - между картинками, которые затем присоединялись к написанному фрагменту.

Это сообщение отредактировал radmar - 7.07.2006 - 13:25
PMПисьмо на e-mail пользователюСайт пользователя
Top
Koverun
Дата 7.07.2006 - 20:52
Написать ответЦитировать выделенный текст
Offline

Соратник
***

Профиль
Группа: Пользователи
Сообщений: 210

Всем, кому интересна тема митохондрий, т. е. внедренных в каждую клетку систем управления, очень советую прочитать научно-фантастическую повесть А.Лазаревича "Сеть Нанотех". Можно сказать, что «Глубинная книга» по сравнению с ней просто отдыхает.
Книгу бесплатно можно взять по ссылке ниже:
http://webcenter.ru/~lazarevicha/nanotech.htm

Это сообщение отредактировал Koverun - 7.07.2006 - 20:54
PMПисьмо на e-mail пользователю
Top
flash
Дата 8.07.2006 - 13:11
Написать ответЦитировать выделенный текст
Offline

Соратник
***

Профиль
Группа: Пользователи
Сообщений: 106

Спасибо Коvеrun ! Браво Лазаревич ! Нанотех рулееез !


--------------------
да , всё вроде бы так , но ...
PMПисьмо на e-mail пользователюСайт пользователяICQ
Top
radmar
Дата 19.07.2006 - 15:45
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

О безсмертии, "необходимости" смерти, и роли внешнего управления бактериями и митохондриями, для обеспечения процесса смерти.

<<ИБО ТЫ ПРАХ И В ПРАХ ВОЗВРАТИШЬСЯ>>

Размышления о феномене смерти в научном и богословском аспектах

Опубликовано в журнале: «Новый Мир» 2002, №8

Человек свободный ни о чем так мало не думает, как о смерти...
Спиноза, «Этика».


Смерти нет. Конечно, есть страх смерти, и это по-настоящему отвратительный страх. Часто он заставляет людей совершать поступки, которые они не должны были бы совершать. Но как бы все изменилось, если бы мы перестали бояться смерти».
Слова эти принадлежат одному из героев фильма А. Тарковского «Жертвоприношение». С них хотелось бы начать размышления (а может быть, диалог, коль скоро найдутся желающие присоединиться к нему) о феномене смерти в мире.
Все мы в детстве читали сказки, герои которых искали способы продления молодости и обретения вечной жизни. В нас живет многовековая мечта о личном бессмертии, мечта, вероятно, такая же древняя, как и сам человек. При всем различии сюжетов, связанных с посмертным существованием у разных народов и в разных религиях, тем не менее учение о бессмертии можно считать универсальным.
«Повсеместное распространение веры в то, что смерть не влечет за собой полного уничтожения личности, — факт, заслуживающий внимания, — пишет протоиерей Александр Мень. — ...Мысль о бессмертии — отнюдь не просто биологический феномен. Прежде всего она — проявление духа, интуитивно ощущающего свою неразложимую природу».
Но откуда происходит эта интуиция? Наша тяга к бессмертию — это, вероятно, мечта об утерянной родине, о том вожделенном отечестве, в котором человек был счастлив, здоров и вечен. Наименование этого отечества — Сад Эдемский, или Рай. Человек в Эдеме не знал смерти — так веруют те, кто не отрицает существования и самой райской обители.
Но интересен вопрос: а есть ли реальные биологические основания для совокупного человеческого бессмертия, то есть бессмертия человека во всех трех его ипостасях (тело — душа — дух)? Мне представляется весьма значимой постановка вопроса о возникновении феномена смерти как такового. Николай Бердяев считал, что «вера в естественное бессмертие сама по себе бесплодна и безотрадна, для этой веры не может быть никакой задачи жизни, и самое лучшее поскорее умереть, смертью отделить душу от тела, уйти от мира. Теория естественного бессмертия ведет к апологии самоубийства»2.Да, мы живем в мире, где царствует смерть. Ей неподвластен лишь человеческий дух, который избегает распада после смерти физического тела и возвращения его в общий круговорот веществ: «ибо прах ты и в прах возвратишься» (Быт. 3: 19). Но существовала ли смерть в мире всегда, с момента появления живого, или она есть позднейшее приобретение, следствие первородного греха человека, а до грехопадения отсутствовала в принципе? Кто виновник ее торжества в мире?
Размышляя о смерти, нам не избегнуть понятия «жизнь», они онтологически неразъединимы, по крайней мере в нашем сознании и в нашем миробытии. Попытки дать определение жизни предпринимались давно. Однако в самых тщательных из них что-то ускользало. Да и обнаружение в середине XIX века вирусов, а также последующее изучение их своеобразного жизненного цикла показало, что феномен биологической жизни сложнее и разнообразнее, чем можно было предполагать. Поэтому определять жизнь лучше через описание свойств живого. А главное из них — способность воспроизводить себя во времени в течение ряда поколений. «Плодитесь и размножайтесь», — это повеление дано Господом именно живым существам, но не воде, земле или светилам, также вызванным к бытию Его созидающей волей. Итак, жизнь — это пламя, которое не гаснет уже долгие века, эстафета, передающаяся от одного участника к другому.

Если схематизировать существенные этапы жизни, получится последовательность:
зачатие ® рождение ® рост ® старение (деградация) ® смерть.

Но правильно ли будет ставить на этом точку? Может быть, смерть — это путь к возрождению, необходимый этап к рождению в новом качестве (по крайней мере для человека)? А если так, то не несет ли смерть — казалось бы, самое ужасное из того, что существует в мире, — свою особую, сокровенную сверхзадачу, можно сказать — миссию?
И еще вопрос: может ли живое избегнуть смерти? Есть ли такие примеры?

Бессмертными организмами можно считать бактерии, поскольку им не знакомы старость и умирание. Аналогичная ситуация наблюдается и у амеб — одноклеточных организмов из царства Простейших, которые размножаются простым делением надвое. При неограниченных пищевых ресурсах и соответствующих условиях среды они могут размножаться и жить очень долго. Что это — бессмертие? В определенном смысле — да. Ведь в данном случае не прекращается обмен веществ, не происходит распад, образование мертвых тел. Но даже у амеб и бактерий обнаружен процесс, который можно было бы назвать «запрограммированной гибелью», правда, включается он лишь в крайне неблагоприятных условиях, когда речь идет о выживании всей субпопуляции: большая часть особей жертвует собой, но их смерть спасает оставшихся. Итак, потенциальное бессмертие у амеб сопровождается в исключительных случаях гибелью некоторых особей.

Несколько иная картина наблюдается у инфузорий — других представителей царства Простейших, значительно более сложно устроенных по сравнению с амебами. Митотические деления надвое, в отличие от амеб, не могут происходить у них бесконечно долго. После определенного их количества у инфузорий появляются явные признаки старения (деградации). Но смерть не наступает, так как здесь на помощь приходит необычный, можно сказать, уникальный процесс, называемый конъюгацией. Суть его в самом общем виде состоит в следующем. Две «состарившиеся» инфузории сближаются, плотно прижимаются друг к другу брюшной стороной и остаются в этом состоянии около двенадцати часов. В это время в теле каждой происходят довольно сложные превращения. Макронуклеус разрушается и диспергирует в цитоплазме (то есть наблюдается частичная смерть на уровне органеллы), микронуклеусы несколько раз делятся, причем часть из них также разрушается. Остаются лишь по две части микронуклеуса в каждой инфузории. Далее одна из двух частей (так называемое мигрирующее ядро) переходит в своего партнера по конъюгации. Другими словами, идет взаимный обмен частью генетической информации. Далее мигрирующее ядро сливается с ядром стационарным, которое не покидало свою клетку. После этого новое ядро делится, восстанавливая новый микронуклеус, а за ним и макронуклеус. Этот процесс имеет важный биологический смысл: после конъюгации каждая особь получает «вторую молодость», у нее восстанавливается уровень обмена веществ, темп митотиче¬ских делений и т. д. Впоследствии инфузории вновь начинают делиться обычным путем, до следующей конъюгации, которая вновь вдохнет в них вторую жизнь. Вот такой пример бегства от старости и смерти дают нам одноклеточные, которых мы несколько высокомерно именуем простейшими.

Явление частичной смерти можно наблюдать также и у вирусов: инфицируя клетку, они отбрасывают белковый капсид, а также все остальные приспособления, необходимые для поиска клетки-хозяина и внедрения в нее. Проникшая в клетку вирусная нуклеиновая кислота обеспечивает синтез многочисленных новых копий вирусных частиц. Таким образом, жертвуя частью своего тела, вирус обретает возможность для размножения и дальнейшего существования.

Но все же феномен частичного умирания не получил широкого распространения среди живых организмов. Эволюция на определенном этапе привела к появлению многоклеточных форм жизни. Это эволюционное достижение породило и новые проблемы. Дело в том, что митотическое деление клетки, являющееся способом размножения одноклеточных организмов, для многоклеточных форм живого в принципе невозможно. И они утрачивают сопряженное с делимостью бессмертие. Исключение тут представляют разве что растения, способные размножаться не только половым путем, но и вегетативным — за счет таких органов, как корень, луковица, корневище, лист, клубень и т. д., что являет собой способ неограниченного продления жизни. Тем не менее в целом можно утверждать, что смерть как биологический феномен вошла в мир после возникновения колониальных форм — первых прообразов многоклеточных организмов (примером может служить колониальная зеленая водоросль вольвокс, для которой смерть материнской колонии стала «нормой жизни»). Получается, что смерть есть своего рода «плата» за многоклеточность — то биологическое решение, которое родилось на одном из этапов эволюционного становления живого.

А все же есть ли среди многоклеточных владеющие тайной вечной жизни? Пожалуй, да. Подлинные «кощеи бессмертные» — это раковые клетки, размножение которых идет весьма интенсивно, не обнаруживая при этом признаков старения. Однако их индивидуальное бессмертие становится причиной смерти организма — носителя этих клеток. К примеру, в исследованиях по канцерогенезу используется культура клеток линии HeLa. Эти клетки были взяты в 30-е годы XX века во время операции по удалению злокачественной опухоли у одной пациентки (инициалы ее имени и дали название культуре клеток). С тех пор эти клетки сотни тысяч, если не миллионы раз пересевали на искусственных средах. Они по-прежнему интенсивно растут и делятся без каких-либо признаков старости, став модельной тест-системой для онкологов всего мира.
Конечно, бессмертие раковых клеток не осталось вне поля зрения исследователей. Был открыт фермент, активно функционирующий в раковых клетках, — так называемая теломераза. Вероятно, в значительной мере благодаря ее деятельности раковые клетки, в отличие от своих нормальных здоровых собратьев, остаются бессмертными. В 1985 году теломераза была обнаружена у инфузорий, дрожжей, растений, а также у животных (в половых и раковых клетках). В 1997 году был картирован ген теломеразы. Год спустя он был встроен в клетки зрительного эпителия человека. При этом время жизни таких модифицированных клеток в системе in vitro увеличилось в полтора раза. Таким образом, фермент теломераза, возможно, — настоящий «эликсир бессмертия». Вместе с тем не следует забывать, что он же является и фактором злокачественного перерождения клеток. За бессмертие приходится платить дорогую цену.

Для каждого вида живых организмов существует такое понятие, как максимальная продолжительность жизни (МПЖ). В каждой систематической группе животных есть свои долгожители. Например:
Группа МПЖ
Рыбы (осетры) 100 лет
Земноводные
(гигантские саламандры) 50 лет
Пресмыкающиеся
(крокодилы, черепахи) 150 и более лет
Птицы
(филины, вороны, попугаи) 70 лет
Млекопитающие (человек) 110 — 120 лет

Но мы не найдем, по крайней мере в животном мире, завораживающих примеров бессмертия или феноменального долголетия. Время жизни всегда оказывается конечным. Более того, существуют организмы, вся жизнь которых умещается в столь краткий миг, что они даже не имеют органов пищеварения, вместо кишечника у них — воздушный пузырь, а ротового аппарата нет вовсе вследствие полной его редукции. И жизнь их длится всего от нескольких часов до двух суток. Но за это краткое время надо успеть главное — продлить свой род, прежде чем уйти в небытие. Их так и назвали — поденки. Они являются представителями одного из древнейших отрядов насекомых, известных еще с каменноугольного периода.

Вообще палеонтологическая летопись, эта «раскрытая книга Бытия», как назвал ее в одном из своих стихотворений И. Бунин, бесстрастно зафиксировала всеобщность феномена смерти с самого начала развития живого на Земле. К моменту появления человека современного морфологического типа (а произошло это событие около 150 — 160 тысяч лет назад) ее недра уже были гигантской братской могилой, в которой упокоились представители многочисленных биологических видов. Таким образом, мы неизбежно должны признать, что смерть существовала в мире изначально, не делая исключений ни для кого из обитателей Земли. Эти выводы палеонтологии так же надежны, как и тот факт, что Земля имеет форму шара. И все же часто приходится слышать богословское мнение о том, что смерть поразила живое лишь после грехопадения наших прародителей, а в дочеловеческом мире ее не существовало вообще, то есть все без исключения многочисленные виды живых организмов были бессмертны. Есть ли в этом утверждении зерно истины?
Попробуем взглянуть на смерть в несколько ином ракурсе. Мы привыкли мыслить смерть как нечто ужасное, несправедливое, недолжное, как фундаментальное несовершенство живого, не согласующееся с нашими представлениями о благости Творца и Вседержителя мира.
Но вот в конце 80-х годов появились весьма интересные исследования, которые, как мне представляется, должны принципиально изменить бытующий взгляд на феномен смерти. Усилиями представителей нескольких научных направлений (молекулярная биология, молекулярная генетика, онкология, биология развития) было открыто необычное явление — апоптоз (от греческого слова apoptosis — опадание листьев).
Апоптоз можно определить как физиологическое самоубийство некоторых клеток, которое запрограммировано на генетическом уровне. Более того, было показано, что апоптоз принципиально отличается от обычной некротической гибели клеток, подвергшихся каким-либо повреждениям. Картина развертывания апоптоза иная. Это последовательная, подчиненная строгим правилам программа самоубийства некоторых клеток. Но их смерть не бессмысленна. Напротив, она является актом самопожертвования во имя интересов и блага всего организма. Как же это происходит?
Основные этапы апоптоза таковы:
1. Вначале клетка получает особое биохимическое послание («черную метку», по выражению одного из исследователей) о том, что она должна погибнуть. Послание это приходит либо из межклеточного вещества, либо от клеток-соседей. Для его восприятия у каждой клетки есть особые «органы» — так называемые «рецепторы смерти». Это белковые молекулы, пронизывающие клеточную мембрану. Следовательно, любая клетка имеет специальный механизм, чтобы прочитать это роковое послание.
2. После получения послания внутриклеточные регуляторы изменяют работу ряда генов клетки таким образом, что в ней образуются или активируются особые ферменты (протеазы и нуклеазы), задача которых — разрушение клеточных белков и нуклеиновых кислот. Именно к этим действиям они и приступают.
3. Далее следует заключительный этап, связанный с деградацией ядерной ДНК (она распадается на фрагменты вплоть до олигонуклеотидов длиной порядка 180 пар). В конечном итоге клетка подвергается фрагментации, теряет целостность и уничтожается микрофагами или макрофагами, то есть становится своего рода питательным субстратом для других клеток. При этом фагоцитоз не сопровождается воспалительным процессом, как это бывает при некрозе.
Интересно отметить, что окончательное решение (образно говоря, где поставить запятую в фразе «казнить нельзя помиловать») принимается в прямом смысле «большинством голосов». Все зависит от соотношения концентрации белков, одни из которых «голосуют» за смертный приговор (это белки из семейства Bax, обладающие апоптозной активностью), в то время как другие готовы «даровать жизнь» (белки Bcl-2). Причина в том, что белки Bcl-2 могут образовывать димерные комплексы с белками Bax, тем самым нейтрализуя их, то есть предотвращая развертывание апоптозного сценария.
Следует сказать, что апоптоз — отнюдь не экзотический процесс. Скорее наоборот. Он — явление универсальное, свойственное всему живому. В настоящее время открыты и интенсивно исследуются: митоптоз — программированная гибель митохондрий (одного из органоидов клетки), апоптоз — программированная гибель целых клеток, органоптоз — программированная гибель органов и, наконец, феноптоз — программированная гибель особи.
Каковы же биологические функции апоптоза?
Если кратко суммировать, то получим следующее:
обеспечение органогенеза и дифференцировки клеток;
поддержание тканевого гомеостаза;
защита от патогенных факторов.

Понятно, что функциональное значение этого механизма является жизненно важным как для клетки, так и для организма в целом. Наиболее ярким примером того, как путем апоптоза поддерживается точная регуляция количества клеток в организме, может служить червячок Caenorhabditis elegans. У него в процессе индивидуального развития образуется 1076 клеток, но далее ровно 131 из них обязательно гибнет, так что в конечном итоге его крохотное, размером не более одного миллиметра тельце будет состоять из 945 клеток, ни одной больше или меньше. Аналогичные процессы происходят также у животных и человека при формировании в эмбриогенезе различных органов, включая нервную систему. При этом избыточные клетки решительно подвергаются апоптозу. И это вполне понятно: существование лишних клеток не принесло бы организму ничего хорошего. Поэтому часть из них в самом прямом смысле приносит себя в жертву ради общего блага. В этом состоит высокий биологический смысл апоптоза.

А вот нарушение процесса апоптоза влечет за собой многочисленные неприятные последствия, часто — с летальным исходом. Если говорить о человеке, то у него появляются злокачественные новообразования, различные аутоиммунные болезни (например, системная красная волчанка), нейродегенеративные заболевания (такие, как синдром Альцгеймера, болезнь Паркинсона), дефекты развития, а также прогрессируют вирусные инфекции. Кстати, многие вирусы, проникая в клетку, стараются в первую очередь нарушить механизм ее апоптоза, чтобы не быть уничтоженными вместе с зараженной ими клеткой-хозяином, которая ради блага организма стремится самоликвидироваться.

Наиболее глубокие исследования апоптоза принадлежат академику Владимиру Скулачеву. Он показал, что в клеточных реакциях атомы кислорода, которым дышит за редким исключением все живое, превращаются в радикалы гидроксила, являющиеся чрезвычайно активным окислителем. Эта ядовитая форма кислорода выступает как еще одна из причин апоптоза, то есть служит «орудием самоубийства». Эту систему самоликвидации Скулачев назвал «самурайским законом биологии». И выполняться этот закон начинает, когда в клетке накапливается слишком много генетических повреждений либо в «бездомных» клетках, которые покинули свою ткань и начали бессмысленное блуждание по организму. Следовательно, геном остается относительно неизменным в течение тысячелетий именно благодаря тому, что некоторые клетки делают себе «харакири». Однако исследованиями было показано, что не толькоотдельные клетки, но даже и органы могут ступить на путь самоликвидации. Ядовитые формы кислорода приводят к тому, что в процессе эмбриогенеза исчезают ставшие ненужными некоторые эмбриональные структуры, а также личиночные органы (например, хвост у лягушачьего головастика, наружные жабры и т. д.).

Дальнейшие исследования этого феномена дают основанияпредполагать, что генетическая программа апоптоза универсальна для всего живого, от бактерий до человека, поскольку были найдены многочисленные гомологичные гены, связанные с реализацией апоптозного сценария. Таким образом, программа самоубийства клетки, записанная в ее генах, по-видимому, является столь же древней (и при этом весьма консервативной), как и сам феномен жизни. Поистине этот факт достоин удивления.
Однако не менее интересным представляется следующее обстоятельство: и механизм апоптоза, и механизм деления клетки (митоз) регулируются одними и теми же белками. «Таким образом, системы регуляции клеточного деления и клеточной смерти оказываются тесно переплетенными между собой», — пишет известный вирусолог, профессор МГУ, член-корреспондент РАН В. И. Агол3. Жизнь и смерть оказываются двумя неразрывными процессами, один из которых (жизнь) не может нормально функционировать без другого (смерти). Самое большое, с нашей точки зрения, зло природного существования — смерть — вплетена в ткань жизни.

Апоптоз помогает организму освобождаться от избыточных, больных и состарившихся клеток, которые перестают эффективно выполнять свои функции, а также от клеток, в структуре генетического аппарата которых произошли столь значительные изменения, что их существование несет угрозу нормальной работе и жизни всего организма. Нарушение процесса программированной гибели клеток таит в себе, как было сказано, серьезные патологии.

Вывод, который может быть сделан, как ни странно он прозвучит, таков: генетически запрограммированная смерть — явление, жизненно необходимое живому. Возможно, отношения даже в клеточном сообществе лишний раз иллюстрируют мысль о том, что на свете «нет больше той любви, как если кто положит душу свою за друзей своих» (Иоанн, 15: 13).

Как считает Скулачев, при отключении апоптоза человек перестает стареть. «Физиологически бессмертный (или почти бессмертный) человек, вероятно, будет соответствовать зрелому возрасту»4. Но люди не обретут при этом бессмертия, ибо они будут умирать от накопления «поломок» в их организмах. Деградирующего развития (а следовательно, и смерти) нет лишь в вечности. Но, как веруют христиане, вечность наступит, когда кончится время, или, что то же самое, когда будет обретена полнота времен, то есть в Царствии Небесном.
И все же почему даже при столь жестком генетически запрограммированном контроле за качеством клеток, входящих в состав живого организма, его участью все же является рабство тлению — смерть? Каковы биологические причины этого? И столь ли они неотвратимы?

Если говорить о человеке, то необходимо обратиться к исследованиям в области геронтологии. Наука эта за время своего развития накопила немало любопытных фактов, требующих внимательного анализа и осмысления.
Известно, что формирование клеток, органов, а также их функционирование — все это происходит по определенной программе, записанной в молекулах ДНК. Полное прочтение ДНК человека, завершившееся в 2001 году, вероятно, принесет немало открытий, в том числе и по проблеме старения и смерти. Однако уже сейчас можно составить достаточно отчетливую картину.

Геронтологи обратили внимание на то обстоятельство, что нормальная (или физиологическая) температура тела человека, составляющая 37°С, является критической для существования ДНК. Дело в том, что при этой температуре химические связи в молекуле ДНК оказываются весьма нестабильными (наиболее слабой оказывается гликозидная связь между азотистым основанием и углеводом). Эта нестабильность приводит к возникновению разного рода спонтанных повреждений ДНК (таких, как выщепление азотистых оснований, индукция однонитевых разрывов, дезаминирование и метилирование, сшивки оснований и проч.), скорость накопления которых в целом равна 5ћ103 в час. Учитывая время жизни клетки в организме человека, а также общее количество клеток, получаются просто астрономические цифры спонтанных повреждений ДНК, с которыми организм вынужден как-то сосуществовать. Если же сюда прибавить еще и повреждения, вызываемые фоновым излучением, не говоря о прочих неблагоприятных средовых мутагенных факторах, то возникает закономерный вопрос о том, каким образом клетки нашего тела живут при таком физиологически неоптимальном режиме, сохраняя свою исходную генетическую структуру.
Конечно, в клетке существует генетически запрограммированные системы залечивания повреждений ДНК — так называемые репарации. Именно благодаря их работе значительная часть спонтанных и индуцированных повреждений устраняется.

И все же приходится признать, что организм наш устроен как-то странно: получается, что он сам создает себе проблемы и сам же ищет пути выхода из них. Классическое представление о генах как о чем-то стабильном и неизменном теперь необходимо признать устаревшим. Можно утверждать, что ДНК, задача которой — хранение генетической информации, определяющей биологическую стабильность организма как представителя своего вида, на самом деле находится в динамическом постоянстве. В ней с высокой частотой возникают спонтанные повреждения (мутации), которые отслеживаются и залечиваются репарационными системами. Однако далеко не все и не со стопроцентной точностью. Неотрепарированные повреждения, или мутации, неотвратимо накапливаются, вызывая изменения в структуре и функциях как отдельных клеток, так и организма в целом.
Таким образом, возникающие по разным причинам изменения ДНК создают почву для старения организма и его неизбежной гибели. Причем данныемногочисленных исследований подтверждают мысль о том, что неустойчивость первичной структуры ДНК — явление вовсе не уникальное, а общебиологическое, не досадное исключение из правила, а естественная неизбежность, фундаментальная закономерность, свойственная всему живому.

Однако не следует думать, что причины старения кроются лишь в изменениях структуры ДНК. Это только одна причина из целого их комплекса, приводящего в конце концов к старению и смерти.
Даже если представить себе, что организм находится в идеальных, с точки зрения физиологии, условиях существования, тем не менее ему не удастся избежать старения и смерти. Почему? «Недуг, именуемый временем» — такое название старению дал Ф. И. Тютчев. «Время — это объективация человеческим сознанием смертного способа существования»5. Действительно, именно время является тем фактором, который оказывает влияние на состояние клетки, ткани, органа и, наконец, организма в целом. В процессе жизнедеятельности в клетках образуются такие небезобидные соединения, как перекись водорода, свободные кислородные радикалы, перекиси липидов, формальдегид и проч. Все они вступают в реакции с ДНК, что приводит к ее деградации и в конечном счете к окончательному разрушению. Следовательно, чем дольше живет клетка, тем больший груз опасных веществ она накапливает. Почему же не репарируются повреждения, вызванные этими соединениями? Это непростой вопрос. Для работы репарационных ферментов поврежденный участок ДНК прежде всего должен быть доступен, то есть ДНК не должна находиться в спирализованном состоянии. В противном случае ферменты просто не смогут найти повреждение и исправить его. Возможно, это и происходит в стареющих клетках, так как уровень репараций в них снижается, а протяженность спирализованной ДНК повышается. Исследованиями радиобиологов было показано, что существует четкая корреляция между эффективностью репарации и видовой продолжительностью жизни (эта зависимость прослеживается для разных представителей класса млекопитающих, от полевок до человека).

Другой причиной, вносящей свой вклад в дело старения, может являться так называемая «ДНК старения». Она была идентифицирована у сумчатого гриба (аскомицета). Оказалось, что эта ДНК у молодых клеток гриба входит в состав митохондриальной ДНК. Однако на определенном этапе она выщепляется из мтДНК и начинает автономно реплицироваться в форме клеточной плазмиды. Интересно, что в мутантных клетках-долгожителях ядерная ДНК, как оказалось, сдерживает влияние этой плазмиды, тормозя ее выщепление из митохондриального генома и экспрессию ее генов. С течением времени эта плазмида столь сильно размножается, что замещает собой большую часть митохондриального генома. И уж совсем необычным является тот факт, что в ядре клетки есть гены, которые контролируют переход «ДНК старения» из интегрированного состояния в мигрирующую плазмиду. Обнаружение «ДНК старения» в клеточном ядре говорит о том, что ядерная ДНК каким-то образом направляет ее к себе. В конечном счете плазмидная ДНК так безудержно размножается, что вытесняет нормальные последовательности ядерной ДНК клетки. Это приводит к многочисленным изменениям в работе генетического аппарата со всеми вытекающими негативными последствиями.
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 20.07.2006 - 13:07
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Продолжение цикла статей о митохондриях и их родственниках.
Материнское наследие.
Митохондриальные болезни

Атраментова Л.А., доктор биологических наук, профессор
Утевская О.М., кандидат биологических наук, доцент
Кафедра генетики и цитологии, Харьковский национальный университет им. В.Н. Каразина

В последнее время все чаще можно услышать о митохондриальных болезнях. Что же представляют собой эти тяжелые наследственные заболевания? Как следует из названия, это болезни, вызванные дефектами митохондрий - органелл, находящихся в цитоплазме клеток. В одной клетке у человека может присутствовать до 1000 этих внутриклеточных структур. Основная функция митохондрий - выработка и запасание энергии. На наших внутриклеточных "энергетических станциях" работают более 80 ферментов, которые перерабатывают поступающее из цитоплазмы "сырье" - продукты клеточного обмена веществ, а выделяющуюся при этом энергию запасают в форме молекул АТФ. В дальнейшем запасённая таким образом энергия преобразуется: в мышечных клетках - в механическую энергию, в нервных - в биоэлектрическую, в клетках канальцевого эпителия почек - в энергию активного транспорта и т. д.

Дефект любого из ферментов митохондрий нарушает слаженную работу всей "энергетической станции". При этом в первую очередь страдают наиболее энергозависимые ткани и органы - центральная нервная система, скелетные и сердечная мышцы, почки, печень, эндокринные железы. На фоне хронического дефицита энергии в них рано или поздно возникают патологические изменения и развиваются заболевания, которые получили название митохондриальных. Современной медицине известно около 50 таких болезней. В их клинике встречается самая различная патология, но доминируют поражения центральной нервной системы и мышечной ткани. Симптомами, типичными для митохондриальных заболеваний, являются мышечные боли, слабость и атрофия мускулатуры, непереносимость физических нагрузок, птоз, полинейропатия, судороги, отсутствие рефлексов, атрофия зрительного нерва, нейросенсорная тугоухость, мигрени, летаргические состояния, изменения психомоторного развития, олигофрения и деменция.

Характерные особенности проявления и наследования митохондриальных заболеваний во многом обусловлены уникальностью митохондрий как клеточных структур. Митохондрии внутри клеток ведут себя полуавтономно - они имеют собственную ДНК, делятся, синтезируют собственные белки. Существует точка зрения, что митохондрии - это древние внутриклеточные симбионты. Эти органеллы не всегда присутствовали в клетках. Когда-то, еще на заре эволюции, их предшественники - бактерии с эффективным способом кислородного дыхания - были поглощены более крупными клетками, но не переварены ими, а каким-то образом вовлечены в процесс добывания энергии. Свои услуги они предоставляли не бескорыстно, а в обмен на защиту и пропитание. За несколько миллиардов лет эволюции сформировался прочный союз, и сейчас бывшие бактерии - митохондрии - являются неотъемлемой частью эукариотической клетки. Их обмен веществ так тесно переплетен, что ни митохондрии, ни клетки не могут существовать отдельно друг от друга. Все, что осталось от былой независимости митохондрий - это собственный геном со своим генетическим кодом, не таким, как в ядре, а похожим на код бактерий.

Объём митохондриального генома невелик, у человека он содержит от 1 до 8 копий небольшой кольцевой молекулы ДНК. Каждая из этих митохондриальных хромосом кодирует 13 белков - ферментов, ответственных за синтез АТФ, а также рибосомальные и транспортные РНК, участвующие в митохондриальном синтезе белка. Большая часть белков митохондрий (около 70) кодируется генами ядерной ДНК, которая таким образом контролирует работу этих "независимых" органелл, осуществляя централизованную регуляцию их функций в соответствии с энергетическими потребностями всей клетки.

Мутации, нарушающие функции митохондрий, могут происходить как в митохондриальном, так и в ядерном геномах, но большинство дефектов, приводящих к развитию митохондриальной патологии, возникает в генах самих митохондрий. Эти органеллы являются своеобразной зоной повышенного мутационного риска: интенсивно протекающие в них окислительно-восстановительные процессы с избытком поставляют свободные радикалы, повреждающие ДНК. Митохондриальная ДНК, в отличие от ядерной, не защищена белками-гистонами, а древние, доставшиеся от бактериеподобных предков, механизмы репарации её повреждений несовершенны. Поэтому в митохондриальной ДНК мутации накапливаются в 10-20 раз быстрее, чем в ядерной ДНК.

Митохондрия, продолжение следует.

Это сообщение отредактировал radmar - 20.07.2006 - 13:23

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 20.07.2006 - 13:17
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Мутации, возникшие в митохондриальных генах, передаются в новые митохондрии при делении этих органелл. Получается, что даже в пределах одной клетки присутствуют митохондрии с разными вариантами геномов. Это явление называется гетероплазмией. Человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК, причем соотношение митохондрий с мутантными и нормальными геномами может быть каким угодно, поэтому выраженность митохондриальных заболеваний у разных больных неодинаковая. В подобных случаях мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Наследование мутаций в митохондриальном геноме носит особый характер. Если гены, заключенные в ядерной ДНК, дети получают поровну от обоих родителей, то митохондриальные гены передаются потомкам только от матери. Это связано с тем, что всю цитоплазму с содержащимися в ней митохондриями потомки получают вместе с яйцеклеткой, в то время как в сперматозоидах цитоплазма практически отсутствует. По этой причине женщина с митохондриальным заболеванием передаёт его всем своим детям, а больной мужчина - нет.

Диагностика митохондриальных болезней осуществляется на основании комплекса биохимических и цитологических показателей. Ключевую роль играет ДНК-диагностика. Следует заметить, что для митохондриальных патологий характерна высокая изменчивость клинических форм, что затрудняет их идентификацию; в большинстве случаев диагноз ставится уже на финальных стадиях развития болезни.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям. Первое - повышение эффективности энергетического обмена в тканях. Для этого дополнительно вводятся препараты, компоненты которых обеспечивают тканевое дыхание и окислительное фосфорилирование (тиамин, рибофлавин, никотинамид, коэнзим Q10, витамин С, цитохром С и др.). Второе направление терапии - предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е и др.) и мембранопротекторов.

Недавно учёными из Университета Ньюкасла (Великобритания) был предложен оригинальный способ предотвращения митохондриальных заболеваний. Идея состоит в том, чтобы получать эмбрион от трёх родителей! Ядро оплодотворенной яйцеклетки от матери с генетическими отклонениями имплантируется в донорскую яйцеклетку с удалённым ядром. При этом ядерная ДНК, как и положено, передаётся ребёнку поровну от отца и матери, а цитоплазма - от третьего лица, женщины с нормальными митохондриями.

И последнее, что хочется сказать о митохондриях. Накопление мутаций в митохондриальной ДНК рассматривается учёными как один из основных факторов нейродегенеративных заболеваний и старения. Считается, что, предотвращая эти мутации, можно будет увеличить продолжительность жизни. Возможно, изучая митохондрии, современная наука вплотную приблизилась к пониманию механизмов старения и решению проблемы долголетия.

Medicus Amicus #1, 2006

Зачатие.

Это сообщение отредактировал radmar - 20.07.2006 - 13:19

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
radmar
Дата 20.07.2006 - 13:34
Написать ответЦитировать выделенный текст
Offline

Сподвижник
****

Профиль
Группа: Пользователи
Сообщений: 927

Ближайшая родня митохондрии, имеющая общего протопредка.

Бактерия вольбахия - повелитель мух


На фотографии, внизу статьи - яйцо осы Trichogramma kaykai с множеством бактерий Wolbachia (ярко окрашенные точки). Вольбахии концентрируются в удлиненном кончике яйца, из которого впоследствии разовьются органы размножения осы. Бактерии попадут в репродуктивные органы, затем - в яйцеклетки, обеспечив себе гарантированный переход в следующее поколение насекомых-хозяев. Яйцо, показанное на снимке - неоплодотворенное, гаплоидное. Без "помощи" вольбахии из него развился бы самец. Но вольбахия не допустит этого: ведь она передается только по материнской линии, и самцы для нее - ненужный балласт. Бактерии, попавшие в самца, погибают, не оставив потомства. Когда яйцо начнет делится, вольбахия остановит процесс деления (митоз) в тот момент, когда хромосомы уже удвоятся, но еще не разойдутся по двум дочерним ядрам. В результате набор хромосом в яйце станет двойным (диплоидным), и из яйца разовьется самка.

Первое знакомство

Эволюционная биология традиционно рассматривала системы размножения с точки зрения тех преимуществ, которые получает размножающийся тем или иным способом организм. Оказалось, однако, что у очень многих насекомых выбор системы размножения диктуется интересами не макроорганизма, а живущего в его клетках микроорганизма.
(И.И.Горячева, 2004)


Бактерия вольбахия живет в клетках огромного множества наземных беспозвоночных. Трудно сказать однозначно, кем она является - вредным паразитом, комменсалом (безвредным сожителем) или полезным симбионтом. Встречаются все три варианта - с разными хозяевами отношения вольбахии складываются по-разному. Эта бактерия уникальна тем, что вызываемые ей эффекты крайне разнообразны. Иногда она как будто вообще никак не влияет на жизнедеятельность хозяина. Гораздо чаще, впрочем, ее присутствие ведет к весьма драматическим последствиям. Вольбахия научилась тонко регулировать размножение, развитие и даже эволюцию своих хозяев. Поэтому ее называют "микробом - манипулятором".
Вольбахией заражены многие насекомые (по последним данным, не менее 20% видов), а именно мухи (в том числе излюбленный объект генетиков - дрозофила), комары, бабочки, жуки, блохи, прямокрылые (кузнечики, саранчовые, сверчки), перепончатокрылые (муравьи, осы и др.), ногохвостки и многие другие. Кроме насекомых, вольбахия найдена у пауков, клещей, мокриц (наземных равноногих ракообразных), нематод (круглых червей). Далеко не все группы беспозвоночных досконально проверены, и по мере изучения круг известных хозяев вольбахии постоянно растет. Но уже сейчас ясно, что зараженность вольбахией у наземных беспозвоночных - явление повсеместное и массовое. Например, из общего числа видов муравьев, обитающих в Индонезии, вольбахией заражено 50%, из всех наземных изопод (мокриц) - 35%, из нематод-филярий - 90% (данные 1999 г.).

Чего хочет микроб?
Управляя своими хозяевами, вольбахия, разумеется, преследует свои собственные корыстные интересы. В чем же они состоят?
Вольбахия может жить только внутри клеток живого организма (ее нельзя вырастить на искусственных средах, и даже в культурах ткани разводить ее удается с большим трудом). Передается вольбахия "вертикально", по материнской линии, проникая в цитоплазму яйцеклеток, и, таким образом, заражая потомство. Горизонтальная передача, безусловно, тоже происходит, но очень редко. Она сильно затруднена тем, что вольбахия абсолютно не способна жить вне клеток живого организма. Поэтому вольбахия заинтересована прежде всего в том, чтобы:
1) Проникнуть по возможности в каждое яйцо, откладываемое зараженной самкой.
2) Причинить как можно меньше вреда зараженной самке, а по возможности - даже повысить ее жизнеспособность;
3) Повысить плодовитость зараженных самок, а если возможно - еще и снизить плодовитость незараженных самок (чтобы доля зараженного потомства в популяции хозяев росла). Как же вольбахии удается влиять на плодовитость тех самок, которые ею не заражены? Бактерия научилась это делать, используя в качестве своего орудия зараженных самцов. О том, как это осуществляется, мы расскажем ниже.
4) Самцы для вольбахии являются, вообще говоря, ненужным балластом. Бактерии, попавшие в организм самца, обречены умереть вместе с ним - у них нет никаких шансов передать свое потомство следующему поколению хозяев. Вольбахия не может передаваться со сперматозоидами, которые для этого слишком малы. Значит, с точки зрения вольбахии, нужно либо сократить численность самцов в популяции (чтобы не конкурировали с самками за ресурсы), либо вообще от них избавиться, если возможно; либо, наконец, использовать их в своих целях - как орудие воздействия на самок.
Вольбахия добилась удивительных успехов в достижении указанных "целей". Разные штаммы вольбахии научились проделывать разнообразные удивительнейшие манипуляции со своими хозяевами, радикально изменяя их размножение, развитие и даже ход эволюции. Эффект, оказываемый вольбахией на хозяина, определяется в первую очередь штаммом вольбахии, то есть разновидностью самой бактерии (которых известно несколько сотен), во вторую - биологией хозяина.
Основные типы манипуляций, проделываемых вольбахией со своими хозяевами
1. "Цитоплазматическая несовместимость" - наиболее широко распространенный (и, по-видимому, эволюционно самый древний, первичный) эффект вольбахии. Проявляется он в том, что когда зараженный самец оплодотворяет незараженную самку, эмбрионы оказываются нежизнеспособными и гибнут на ранних стадиях развития. Происходит это потому, что мужские хромосомы в оплодотворенном яйце ведут себя ненормально и в конце концов разрушаются, и яйцо остается гаплоидным. Установлено, что вольбахии, живущие в самце, каким-то образом изменяют ("метят") хромосомы сперматозоидов. Эта "метка" и является причиной разрушения хромосом после оплодотворения. Однако если самка заражена тем же самым штаммом вольбахии, мужские хромосомы не разрушаются, и из яйца развивается нормальная особь (естественно, зараженная). По-видимому, присутствующие в яйцеклетке бактерии "распознают" метку и спасают хромосомы от разрушения. Это распознавание и "спасение" (rescue) - обычно является штаммоспецифичным, т.е. вольбахии "спасают" только хромосомы, "помеченные" тем же самым штаммом (хотя есть и исключения).
Зараженные самки производят нормальное потомство независимо от того, какой самец их оплодотворит - зараженный или "здоровый", в то время как у здоровых самок потомство выживает только во втором случае, а в первом - гибнет. Таким образом, зараженные самцы используются вольбахией как средство снижения плодовитости незараженных самок. Это приводит к росту относительного числа зараженных особей в популяции хозяев, т.е. к распространению инфекции.
Вызываемая вольбахией цитоплазматическая несовместимость в норме является односторонней (скрещивания здоровых самок с зараженными самцами бесплодны, зараженных самок со здоровыми самцами - плодовиты). Однако если две популяции одного и того же вида насекомых заражены разными штаммами вольбахии, между ними возникает двусторонняя несовместимость. В принципе это может привести к полной репродуктивной изоляции - так называемому "инфекционному видообразованию". Не исключено, что именно таким способом возникли многие виды насекомых, хотя прямых доказательств этого пока нет. Подробнее о цитоплазматической несовместимости.
2. Партеногенез. В некоторых случаях вольбахии удается заставить своих хозяев (а именно ос, клещей, трипсов и ногохвосток) размножаться партеногенетически (без оплодотворения). Так, у перепончатокрылых в норме из неоплодотворенных (гаплоидных) яиц развиваются самцы, из оплодотворенных - самки. Таким образом, насекомые имеют возможность регулировать пол потомства, оплодотворяя или не оплодотворяя свои яйцеклетки. Вольбахия вмешивается в этот процесс, нарушая нормальный ход развития насекомого. Когда неоплодотворенное гаплоидное яйцо (из которого должен развиться самец) начинает делиться, вольбахия останавливает процесс митоза, когда хромосомы уже удвоились, а дочерние клетки еще не разделились. В результате в клетке оказывается двойной набор хромосом, и из нее развивается самка. Некоторые популяции ос, зараженные вольбахией, полностью утратили способность к нормальному половому размножению, и не возвращаются к нему, даже если их вылечить от вольбахии антибиотиком. В таких популяциях самцы отсутствуют. Кроме вольбахии, партеногенез у ос иногда вызывают и другие цитоплазматические бактерии. Подробнее о партеногенезе.
3. Феминизация. У мокриц (наземных равноногих ракообразных) и бабочек вольбахии научились превращать генетических самцов в самок, воздействуя на систему выработки так называемого "андрогенного гормона". При отсутствии этого гормона из эмбриона развивается самка, при его наличии - самец. У зародышей мокриц мужского пола вольбахия подавляет развитие андрогенной железы, вырабатывающей данный гормон. Если заразить вольбахией более взрослого самца мокрицы, у которого уже имеется андрогенная железа, все равно происходит частичная феминизация, хотя деятельность андрогенной железы при этом продолжается. При частичной феминизации появлются интерсексы - особи с различными сочетаниями мужских и женских признаков. По-видимому, в этом случае вольбахия подавляет способность тканей адекватно реагировать на андрогенный гормон. Из этого видно, что воздействие вольбахии на хозяина может иметь комплексный характер; разные механизмы воздействия могут дублировать и "подстраховывать" друг друга. Интересно, что у обеих групп, где наблюдается индуцированная вольбахией феминизация (изопод и бабочек) самки гетерогаметны (т.е. имеют две разные половые хромосомы WZ; у самцов ZZ). Если вылечить "неосамку" (т.е. зараженную мокрицу с хромосомами ZZ - генетического самца), то, если "самка" молодая, она частично или полностью превращается в самца, а если старая - остается самкой, но производит на свет исключительно одних самцов (т.к. у нее нет "женской" хромосомы W). Кроме вольбахии, феминизацию различных видов беспозвоночных могут вызывать некоторые другие бактерии, а также простейшие (микроспоридии и парамиксидии). Подробнее о феминизации.
4. Гибель самцов (андроцид). Иногда вольбахия вызывает гибель эмбрионов мужского пола (у божьей коровки, двух близких видов африканских бабочек, одного вида дрозофил). Гибель самцов вызывается целым рядом других бактерий (риккетсиями, эрлихиями, спироплазмами), а также паразитическими простейшими. Для вольбахии же это скорее исключение. Любопытно, что по крайней мере в некоторых случаях эффект гибели самцов вызывается вольбахией у тех видов насекомых (в частности, у божьих коровок), в популяциях которых присутствуют и другие виды бактерий - "самцеубийц" (male-killers). Высказано предположение, что иногда частичная гибель самцов может быть выгодна самим насекомым. Тогда данный эффект может быть генетически закреплен со стороны хозяина. Может быть, со стороны вольбахии в этом даже нет "ничего личного". Возможно, насекомые сами реагируют гибелью самцов на какие-то факторы, общие для вольбахии и других "самцеубийц". Важно отметить, что среди немногочисленных насекомых, у которых вольбахия вызывает андроцид, есть виды как с гетерогаметными самками (самки WZ, самцы ZZ у бабочек), так и самцами (самки XX, самцу XY у дрозофил и божьих коровок). Следовательно, скорее всего, "распознавание" самцов происходит не по набору половых хромосом, а как-то иначе. Подробнее об андроциде.
5. Повышение плодовитости и жизнеспособности. У одной осы единственный эффект, производимый вольбахией - резкое увеличение плодовитости самок. У других мух и ос этот эффект сочетается с цитоплазматической несовместимостью. Иногда вольбахия повышает плодовитость самцов. У некоторых насекомых (например, дрозофил) после излечения от вольбахии отмечается снижение плодовитости, продолжительности жизни и других параметров "общей приспособленности". Интересно, что в ряде случаев эти эффекты исчезают через несколько поколений (жизнеспособность и плодовитость вновь становятся такими же высокими, как у зараженных особей). Это наводит на мысль о том, что "польза", приносимая вольбахией хозяину - какая-то ненастоящая, иллюзорная (по крайней мере в некоторых случаях). Может быть, вольбахия иногда вызывает нечто вроде наркотической зависимости или пользуется известным приемом "яд-противоядие", распространенным у некоторых паразитов. Например, паразит может вырабатывать длительно действующий яд и не столь длительно действующее противоядие. В результате гибель паразита незамедлительно ведет к смерти хозяина. Хозяин становится сам заинтересован в том, чтобы любой ценой сохранить своего паразита.
Для нематод-филярий вольбахия является жизненно необходимым симбионтом. "Вылеченные" от вольбахии нематоды погибают. На этом основана новая методика лечения филяриоза. Самих нематод "заморить" гораздо труднее, чем их симбионтов - вольбахий, которые быстро погибают от обычного тетрациклина.
Разнообразные эффекты вольбахии, судя по всему, возникали в эволюции различных ее штаммов многократно и независимо. Например, штаммы, вызывающие феминизацию у бабочек и мокриц, вовсе не родственны между собой. Это говорит о том, что, вероятно, все эти эффекты базируются на какой-то единой молекулярно-генетической основе и могут сравнительно легко переходить один в другой.

Как вольбахия влияет на эволюцию своих хозяев?
К сожалению, фактические подтверждения влияния вольбахии на эволюцию хозяев получить весьма трудно. Возможные эффекты пока рассчитываются чисто теоретически. Так, самый очевидный из возможных эффектов - "инфекционное видообразование". Если часть особей какого-то вида насекомых заражена одним штаммом вольбахии, другая - другим, и оба штамма вызывают цитоплазматическую несовместимость, то между насекомыми, зараженными разными штаммами, возникает полная репродуктивная изоляция. Какую роль играл этот механизм видообразования в эволюции насекомых - неизвестно.
Такие эффекты, как партеногенез, гибель самцов, феминизация в общем должны снижать интенсивность рекомбинации и полиморфизм популяций хозяев, тем самым снижая их эволюционную пластичность и приспособляемость к меняющимся условиям. В эволюционном масштабе времени это должно проявляться в сокращении средней продолжительности существования видов, в ускорении "оборота" видового состава.
Самый распространенный эффект - односторонняя цитоплазматическая несовместимость - в принципе может приводить к весьма интересным последствиям. В зараженной популяции начинают действовать факторы отбора, способствующие выработке репродуктивной изоляции между зараженными и незараженными особями.
Зараженным самкам и здоровым самцам все равно, с кем скрещиваться; они оставят потомство в любом случае. Однако здоровым самкам, чтобы оставить потомство, нужно спариться обязательно со здоровым самцом. Зараженным самцам необходимо выбрать зараженную самку, иначе его потомство погибнет. Таким образом, насекомому выгодно научиться распознавать "статус" партнера в смысле его зараженности вольбахией, и спариваться только с теми, чей статус совпадает с его собственным.
Может ли в принципе выработаться такой механизм распознавания? По-видимому, да. Об этом говорят эксперименты по "экспериментальному видообразованию", проведенные на различных насекомых (Шапошников, 1961, 1965, 1966; Dodd, 1989; см. Доску объявлений, №15). По-видимому, существуют какие-то общие механизмы, регулирующие эволюционные изменения половых предпочтений у животных по принципу биохимической и/или иммунологической близости.
В таком случае заражение вольбахией создает предпосылки для "отпочковывания" незараженной части популяции в отдельный вид. После установления репродуктивной изоляции отбор будет способствовать экологическому расхождению разделившихся видов (чтобы снизить конкуренцию). В результате неабсолютной способности вольбахии проникать в каждое яйцо, откладываемое зараженной самкой, в "зараженном" виде снова может сформироваться незараженная фракция (возможны и другие способы потери вольбахии - например, перегрев или естественные антибиотики); "незараженный" вид может получить вольбахию в результате "горизонтального переноса"... Таким образом, вольбахия, по идее, может служить движущей силой интенсивного видообразования, приводить к дроблению видов и экологических ниш.

Будет ли разгадана тайна вольбахии?
Важнейшей научной задачей является расшифровка молекулярно-генетических механизмов всех этих сложных манипуляций, осуществляемых вольбахией со своими хозяевами (само слово "хозяин" здесь даже кажется не совсем подходящим, потому что еще не известно, кто кем командует - скорее, это тот случай, когда "хвост виляет собакой"). Понятно, что расшифровка этих механизмов даст человеку мощные новые средства воздействия на живые организмы и природу в целом.
Экспериментальные исследования вольбахии до крайности затруднены невозможностью ее культивирования вне живого хозяина. Поэтому главные надежды ученые возлагают на анализ генома этого удивительного микроба - "повелителя мух". Уже отсеквенированы геномы нескольких штаммов. О результатах анализа этих геномов, приподнимающие завесу тайны над молекулярными "технологиями" вольбахии, мы будем рассказывать на отдельной страничке, которая будет пополняться по мере поступления новых данных.
Вольбахия интересна не только сама по себе, как уникальный природный объект. Изучение этой бактерии позволяет лучше понять общие принципы становления и развития симбиотических систем, отношений паразита и хозяина, общие законы сопряженной эволюции видов в сообществе. Изучение вольбахии имеет немаловажное значение и для понимания происхождения эукариотической клетки. Дело в том, что вольбахия относится к группе альфа-протеобактерий, из которой происходят предки митохондрий. Сравнительный анализ взаимоотношений нуклеоцитоплазмы эукариот с митохондриями и с вольбахиями позволяет лучше понять многие аспекты становления эукариот.

(фото Merijn Salverda & Richard Stouthamer с сайта http://www.nsf.gov/od/lpa/%20news/03/pr03106_images.htm )



Это сообщение отредактировал radmar - 20.07.2006 - 13:38

Присоединённое изображение
Присоединённое изображение
PMПисьмо на e-mail пользователюСайт пользователя
Top
  Быстрый ответ
Информация о Госте
Введите Ваше имя
Кнопки кодов
Для вставки цитаты, выделите нужный текст и
НАЖМИТЕ СЮДА
Введите сообщение
Смайлики
:huh:  :o  ;)  :P  :D 
:lol:  B)  :rolleyes:  <_<  :) 
:angry:  :(  :unsure:  :wacko:  :blink: 
:blush:  :excl:  :bigwink:  :megalol:  :wow: 
         
Показать всё

Опции сообщения  Включить смайлики?
 Включить подпись?
 
0 Пользователей читают эту тему (0 Гостей и 0 Скрытых Пользователей)
0 Пользователей:

Опции темыСтраницы: (8) Все « Первая ... 4 5 [6] 7 8  Ответ в темуСоздание новой темыСоздание опроса

 

  Rambler's Top100 - Позиция в рейтинге, подробная статистика   Рейтинг@Mail.ru - ВИЗИТОВ ВСЕГО / СЕГОДНЯ / ХОСТОВ сегодня